

Gunter Semiconductor GmbH

EDITION 09/00

Receiver/Demodulator for time code signals transmitted by the transmitters DCF77 (Germany), MSF (UK), or WWVB (USA)

For inquiry please contact :

China Hong Kong e-mail

Tel: 0086-755-3200442 Tel: 00852-26190748 sales@gsg-asia.com

Fax: 0086-755-3355520 Fax: 00852-24948080

Radio Controlled Clock Receiver

Short Description

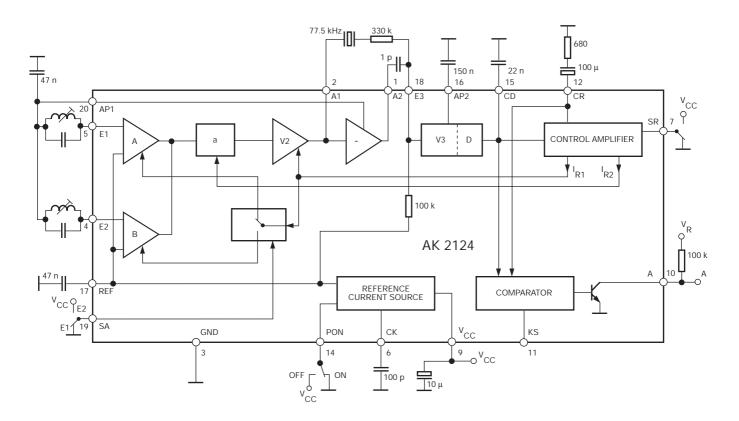
The AK2124 bipolar monolithic integrated circuit receives and demodulates digital time signals emitted by time signal transmitters in the long-wave range. It is designed for low-current battery operation and can be switched in power-down mode. Due to the possibility of connecting two antennas a position-independent stable operation is guaranteed. The circuit is thus capable of the selective reception of various time signal transmitters.

Features

- very low battery drain
- power-down mode
- two antennas connectable
- several transmitters receivable

12.85 ± 0.1 2.30 + 0.1 10.4 ± 0.2 • SOP 20 7.4 + 0.2 2.65 0...10° 0.27 +0.05 0.2 ± 0.1 ∠ 0.15 0.42 ±0.07 ⊕ 0.25 ₪ ≤ 0.82 1.27 ≥ 0.3 17 16 14 13 12 20 19 18 15 11 2 3 4 5 6 7 8 9 10 • Die Pad-layout 11 10 9 8 12 7 13 AK 2124 X 14 5 15 4 16 17 18 1 2 3

Package


The AK2124 is offered in

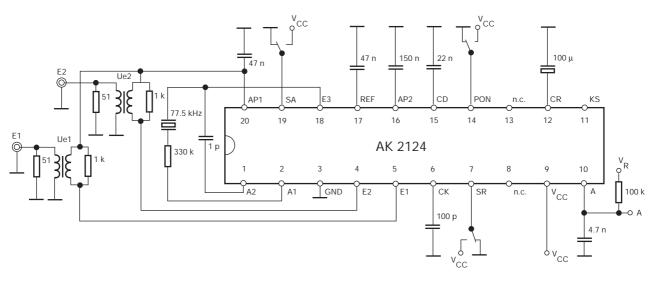
Pinning

Pins 8 and 13 of the SOP 20 package are not connected.

Pad	Pin	Symbol	Pin designation
01	01	A2	RF - output 2
02	02	A1	RF - output 1
03	03	GND	Ground
04	04	E2	Antenna input 2
05	05	E1	Antenna input 1
06	06	CK	Compensation capacity
07	07	SR	Switch controller
08	09	V _{CC}	Supply voltage
09	10	A	Output
10	11	KS	Comparator threshold
11	12	CR	Charging capacitor (for control amplifier)
12	14	PON	Stand - by switch
13	15	CD	Demodulation capacity
14	16	AP2	Operating point regulator 2
15	17	REF	Reference voltage
16	18	E3	Booster amplifier input
17	19	SA	Antenna change-over switch
18	20	AP1	Operating point regulator 1

Block Diagram and Application Circuit

Absolute Maximum Ratings


	symbol	min.	max.	unit
Supply voltage	V _{CC}	0	5.25	V
Output voltage	V _O	0	5.25	V
Antenna switch voltage	V _{SA}	0	V _{CC}	V
Switch controller voltage SR	V _{SR}	0	V _{CC}	V
Stand-by switch voltage PON	V _{PON}	0	V _{CC}	V
Junction temperature	Тj		150	°C
Operating temperature	Т _а	-25	+85	°C

Recommended operational conditions

Supply voltage	V _{CC}	1.4	V	
Frequency	f	50 80	kHz	
Operating temperature	Т _а	0 55	°C	
RF input voltage	V _{iE}	> 3	μV	

Electrical Characteristics

1. Test circuits

Ue1 , Ue2 : pot core $~{\rm A_{j}}$ 1100 nH/w 2 ; 2 x 25 windings with 0.2 CuL

2. Parameters

Refering to the test circuit with generator signal f = 77500 Hz \pm 5 Hz pulse modulation of RF-signal from 100% to 25 % during modulation time t = 200 ms, V_{CC} = 1.4 V ; V_{PON} = 0 V ; T_a = 25 °C unless specified otherwise

	min.	typ.	max.	unit
Supply voltage range (+5°C < T _a < +55°C)	1.2	1.4	2.2	V
Supply voltage range (-25°C < T _a < +85°C)	1.4		2.2	V
Current consumption (normal operation)		600	1000	μΑ
Current consumption (Stand - by)		<1	10	μΑ
Switch current I_{PON} (V_{PON} = ground)		-15	-50	μΑ
Switch current I_{SA} ($V_{SA} = V_{CC}$)		5	10	μΑ
Switch current I_{SR} ($V_{SR} = V_{CC}$)		10	30	μA
Input voltage	3		100000	μV
Antenna switch attenuation		52		dB
Input impedance of the RF amplifier		750		kΩ
Input impedance of the booster amplifier		95		kΩ
Output impedance of the RF segment (A1)		0.3		kΩ
Output impedance of the RF segment (A2)		7.5		kΩ
RF segment amplification (on A1 at $V_{SA} = O V$)		53		dB
Range of input voltage booster amplifier	30		450	μV
Internal resistance of the demodulator		70		kΩ
Output voltage of the demodulator		200		mVpp

	min.	typ.	max.	unit
Control time ($V_{SR} = V_{CC}$) for $\Delta V_i = 0.1 \text{ mV} - 1 \text{ mV}$ for $\Delta V_i = 1 \text{ mV} - 0.5 \text{ mV}$		0.8 2.0		S S
Control time ($V_{SR} = 0V$) for $\Delta V_i = 0.1 \text{ mV} - 1 \text{ mV}$ for $\Delta V_i = 1 \text{ mV} - 0.5 \text{ mV}$		0.8 5.0		S S
Output pulse width ($V_{SR} = 0 V$) at transmitter pulse width 200 ms for $V_R = 1.4 V$, $V_{iE} = 3 \mu V$	180	195	220	ms
Output current I_{OH} ($V_R = 6 V$)			10	μA
Output current I_{OL} ($V_R = 6 V$)	60	200		μA
Output voltage V _{OL} (I _{OL} = 15 μA)		20	200	mV

Application Hints

1. RF Component

An inductive coupling of signals between E1, E2 and AP1 is essential to establishing the given switch-over attenuation.

The SA switch-over point is ca. 0.8 V.

The output A2, with an impedance of 7.5 k Ω , has an inverted output signal ca. 5 dB lower than A1. The filter band width of the quartz filter between A1 and E3 should be set to 20...25 Hz with a series resistance of 330 k Ω . The associated signal attenuation of ca. 12 dB is also desirable when other filter configurations are applied. When the AK2124 is used as a dual standard receiver, antenna switch-over with SA is necessary, as is filtering with two different crystals from outputs A1 to E3, or A2 to E3.

2. Demodulator, Control time constants

The demodulated time signal impulses are available at CD. The time constant is CD \star 70 k Ω .

Regulated voltage is attained at the pin CR, whereby the control-time constant is determined by a switchable decharging circuit and CR.

The control rate is regulated at SR. A larger control-time constant functions at $V_{SR} = O V$ than at $V_{SR} = V_{CC}$. To reduce oscillating overdrive the additional connection with a series resistor of 680 Ω on the CR is recommended.

3. Receiver circuit

The optimal supply voltage is 1.4 V. At applications with a voltage supply above 1.4 V it is better to connect V_{CC} with a bias resistor so that there is about 1.4 V, whereby there is a simultaneous dynamic decoupling to other components. The output is able to bear load resistance with working voltages of up to 5.25 V independent of V_{CC} . It is therefore advantageous to block the V_{CC} - pin with a capacitor > 4.7 μ F.

The usual RF-technical aspects are valid for the PCB layout, whereby special attention should be given to the fact that between A and E3 the greatest possible area is intended for purposes of shielding.